2 research outputs found

    Universally Convertible Directed Signatures

    Get PDF
    Many variants of Chaum and van Antwerpen's undeniable signatures have been proposed to achieve specific properties desired in real-world applications of cryptography. Among them, directed signatures were introduced by Lim and Lee in 1993. Directed signatures differ from the well-known confirmer signatures in that the signer has the simultaneous abilities to confirm, deny and individually convert a signature. The universal conversion of these signatures has remained an open problem since their introduction in 1993. This paper provides a positive answer to this quest by showing a very efficient design for universally convertible directed signatures (UCDS) both in terms of computational complexity and signature size. Our construction relies on the so-called xyz-trick applicable to bilinear map groups. We define proper security notions for UCDS schemes and show that our construction is secure, in the random oracle model, under computational assumptions close to the CDH and DDH assumptions. Finally, we introduce and realize traceable universally convertible directed signatures where a master tracing key allows to link signatures to their direction

    Talos: Encrypted Query Processing for the Internet of Things

    Get PDF
    The Internet of Things, by digitizing the physical world, is envisioned to enable novel interaction paradigms with our surroundings. This creates new threats and leads to unprecedented security and privacy concerns. To tackle these concerns, we introduce Talos, a system that stores IoT data securely in a Cloud database while still allowing query processing over the encrypted data. We enable this by encrypting IoT data with a set of cryptographic schemes such as order-preserving and partially homomorphic encryption. In order to achieve this in constrained IoT devices, Talos relies on optimized algorithms that accelerate order-preserving and partially homomorphic encryption by 1 to 2 orders of magnitude. We assess the feasibility of Talos on low-power devices with and without cryptographic accelerators and quantify its overhead in terms of energy, computation, and latency. With a thorough evaluation of our prototype implementation, we show that Talos is a practical system that can provide a high level of security with a reasonable overhead. We envision Talos as an enabler of secure IoT applications.SeCThing
    corecore